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A density-building function is used to solve the crystal structures of zeolites

from electron diffraction data using both two- and three-dimensional data sets.

The observed data are normalized to give unitary structure factors |Uh|obs. An

origin is defined using one to three reflections and a corresponding maximum-

entropy map, qME(x), is calculated in which the constraints are the amplitudes

and phases of the origin-defining reflections. Eight strong reflections are then

given permuted phases and each phase combination is used to compute P(�q) =R
V �q (x)2/qME(x) dx, where �q(x) is the Fourier transform of |Uh|obs exp(i’perm

h )

� |Uh|ME exp(i’ME
h ), ’perm

h is the permuted phase for reflection h and ’ME
h is the

phase angle for reflection h predicted from the Fourier transform of qME(x). The

64 phase sets with minimum values of P(�q) are subjected to entropy

maximization and, following this procedure, those with the five highest log-

likelihood gains are examined. Sometimes auxiliary potential histogram

information is also used. The method worked routinely with seven zeolite

structures of varying complexity and data quality, but failed with an eighth

structure.

1. Introduction and methodology

In our previous paper (Gilmore et al., 2008, subsequently

called GDD), we have shown how the use of potential-density

histograms can be used in conjunction with entropy maximi-

zation and likelihood to solve zeolite structures from electron

diffraction data with considerable success. Here we use a

different method based on density-building functions

combined with low-resolution maps.

The density-building methodology (Bricogne, 1984;

Henderson & Gilmore, 1989; Bricogne & Gilmore, 1990;

Gilmore et al., 1990, 1991) works as follows.

1. The intensities of the measured reflections are normal-

ized using Wilson’s method to give jUhj
obs
¼ jEhj

obs=
ffiffiffiffi
N
p

and

the associated standard uncertainty �ðjUhj
obsÞ. N is the number

of atoms, assumed equal and excluding O atoms, in the unit

cell. Where possible, no overall temperature factor is imposed

on the normalization. The O atoms are not located using this

electron diffraction (ED) data and so are not included in any

of the calculations.

2. A starting map is defined. This can come from a number

of possible sources: it can be an origin map defined from one

to three reflections (up to four if the enantiomorph is to be

defined) in the usual way [see Rogers (1980) for a summary of

the method and the necessary rules for origin definition] or a

map derived from the early stages of a phase determination

(Gilmore et al., 1990, 1993) or an image-derived map from

electron microscopy.

3. A maximum-entropy map, qME(x), is generated by

maximizing the map entropy subject to the constraints of the

phase and intensities of the reflections used to generate the

starting map.

4. A set of reflections is now chosen which optimally

enlarges the second neighbourhood of the origin and their

phases are permuted using a full factorial design (i.e. every

possible combination of phases is explored). Each permuta-

tion gives rise to a map �q(x) which is the Fourier transform of

jUhj
obs expði’perm

h Þ � jUhj
ME expði’ME

h Þ; ð1Þ

where ’perm
h is the phase angle for reflection h generated by

phase permutation and ’ME
h is the equivalent extrapolated

phase from the current qMEðxÞ.

5. We now compute

Pð�qÞ ¼

Z
V

�qðxÞ2

qMEðxÞ
dx ð2Þ

for each phase permutation. A minimum value of P(�q) is

expected for the correct phase set. In practice, the 50–100

phase sets with the minimum values of P(�q) are retained, and
‡ Present address: Cambridge Crystallographic Data Centre, 12 Union Road,
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these sets are subjected to constrained entropy maximization

in the usual way with associated likelihood estimation. The

EXTEND module in the MICE computer program (Gilmore

& Bricogne, 1997) performs the necessary calculations.

Centroid maps (see GDD) are then generated for the five to

ten nodes with the largest log-likelihood gain (LLG) and

inspected.

This technique has several important features:

(i) each phase permutation requires only one Fourier

synthesis and a map division and so density building is very

fast;

(ii) it acts as a filter to exponential modelling; the reflections

to be permuted are first subjected to this filter and only those

with a certain minimum P(�q) are passed to the maximum-

entropy step;

(iii) The likelihood function uses only moduli, but P(�q)

incorporates phases into the calculation. It therefore acts as a

useful tool in exploring structure-factor space from the current

state of knowledge before moving to various P minima.

P(�q) cannot be used indiscriminately, there are certain

necessary conditions for its successful implementation.

1. qME(x) must have developed sufficient detail. Thus maps

based on a very small basis set or utilizing only small U

magnitudes may have insufficient contrast for its successful

use. This is made manifest by a set of P(�q) values that are

virtually constant through phase permutation. In addition,

division by qME(x) is inherently unstable because of very low

values of q and constraints in division must be employed.

2. The reflections which act as coefficients for permutation

should be chosen using the same criteria of optimum second-

neighbourhood extension used in regular entropy maximiza-

tion. It is also advantageous to choose reflections for which

there is a small but finite extrapolated magnitude from the

current qME(x).

3. Situations where there is no clear minimum or where all

the P(�q) values are constant are clear indications that either

qME(x) has insufficient contrast or that unsuitable reflections

have been chosen as coefficients.

The technique preferentially selects those phases that build

density where it is already well defined. This is very appro-

priate in this situation where we have a clear envelope. It does,

however, need to be used with care as will be described later.

The method has already been used, albeit not extensively,

with regard to small-molecule single-crystal diffraction

(Gilmore et al., 1990), powder diffraction in the solution of the

crystal structure of KAlP2O7 (Gilmore et al., 1993) and on

studies in which protein density is built onto a low-resolution

envelope using the Golay code (Golay, 1949) as a source of

phase permutation (Tate, 2003). We will now modify it for use

with zeolite electron diffraction data.

2. Applications to zeolite ED data

Although these zeolite data sets are difficult to solve, the cell

contents are relatively small, especially as we only consider the

Si T-sites. As a consequence, the U magnitudes are large

(typically the largest are > 0.2), and maps based only on origin-

defining reflections display considerable contrast. It is there-

fore possible to use such qME(x) maps in P(�q) calculations.

Using this information coupled with pilot tests, we have

established the following simple protocol.

1. Normalize using only the Si atoms in the cell contents.

The O atoms contribute less than 20% to the scattering and

are not usually found by direct methods. Their coordinates

need to be either inferred from the Si atoms or found by

subsequent crystallographic calculations based on difference

density maps.

2. Define the origin and use these reflections to generate a

maximum-entropy map, qME(x). The rules initially developed

by Haupman and Karle (as reviewed by Rogers, 1980) are

used.

3. Select eight reflections using the criterion of optimal

second-neighbourhood enhancement (Gilmore et al., 1990)

and compute P(�q) for each possible phase combination. All

the data sets we are using come from centrosymmetric space

groups with phase angles restricted to either 0 or � and so this

generates 28 = 256 possible phase sets.

4. Those 64 sets having a minimum value of P(�q) are kept

and subject to constrained entropy maximization. The asso-

ciated LLG is calculated for each member of the set. Each of

these sets is subsequently referred to as a node.

5. It is not possible to use the scoring procedure that we

usually use with maximum-entropy (ME) methods (Shankland

et al., 1993) because the phase space, having been filtered by

P(�q), is not evenly sampled so the nodes are sorted on LLG

value and the potential centroid maps for the top five are

investigated.

6. If these maps are not interpretable then potential density

histograms are used (as described in the previous paper) to

extend the search space.

3. Examples

We now apply this method to eight data sets. These are the

same as those described in the previous paper (GDD) and the

reader should refer to Table 1 of that paper for a full

description of the data. However, the order in which the

results are presented is different, the reasons for which will

become obvious.
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Table 1
The eight reflections given permuted phase values in the calculation of
P(�q) in the solution of the structure of mordenite.

Reflection No. h k |U|obs

1 2 0 0.372
2 0 8 0.317
3 6 0 0.302
4 0 10 0.239
8 0 2 0.196

12 0 6 0.122
14 0 4 0.109
16 5 3 0.097



3.1. Mordenite

Mordenite (Meier, 1961) crystallizes in space group Cmcm

and the data comprise 27 hk0 reflections with a maximum

resolution of ca 2 Å. We will describe this first trial in detail;

others will be described only briefly since they follow the same

procedure. The overall temperature factor from normalization

was 11.1 Å2.
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Figure 1
(a) Origin centroid map for mordenite based on a single reflection, 150,
with jUhj

obs = 0.22 and phase angle 0 as constraints. The Si sites are
indicated with crosses. (b) The centroid map for mordenite based on the
origin-defined reflection and eight reflections with permuted phases
filtered via the P(�q) function. This is the map corresponding to the
solution with the highest associated likelihood.

Figure 2
(a) Origin centroid map for ZSM-5 based on two reflections, 403, with
jUhj

obs = 0.097, ’ = �, and 503 with jUhj
obs = 0.16, ’ = 0. The Si sites are

indicated with crosses. (b) The centroid map for ZSM-5 based on the
origin-defined reflections and eight reflections with permuted phases
filtered via the P(�q) function. This is the map with the highest associated
likelihood.



The origin was defined via a single reflection, 150, with

jUhj
obs = 0.22 as required by the plane group, and assigned a

phase angle 0 corresponding to the angle from the refined

crystal structure. As in the previous paper, we will always use

phase angles for origin definition calculated from the known

crystal structure. This choice in no way invalidates the calcu-

lations: it simply ensures that the maps and atomic coordinates

all have the same origin as the published ones. Table 1 lists the

reflections that were used. The resulting maximum-entropy

map is shown in Fig. 1(a). It can be seen that much of the

density correctly defines a low-resolution molecular envelope

apart from the ellipse centred on (0.5,0.5). There is sufficient

dynamic range in the map for the P(�q) formalism to work.

Table 1 lists the reflections that were given permuted phases in

a full factorial design.

The P(�q) function was calculated for each of the 28 = 256

phase combinations. The 64 phase sets with the minimum

associated values of this function were retained and subjected

to entropy maximization. The resulting likelihood estimates
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Figure 4
(a) Origin map for basic copper chloride, CuCl2 �3Cu(OH)2, based on
three reflections, 221, 321 and 111, with jUhj

obs = 0.51, 0.59 and 0.33,
respectively, and with zero phase angles. (b) The third-ranked node from
LLG calculations following the use of the P�(q) function and entropy
maximization.

Figure 3
(a) Origin centroid map for MCM-68 based on one reflection, 520, with
jUhj

obs = 0.19, ’ = 0. The Si sites are indicated with crosses. (b) The
centroid map for MCM-68 based on the origin-defined reflections and
eight reflections with permuted phases filtered via the P(�q) function.
This is the map with the highest associated likelihood.



were calculated and analysed. The centroid map from the

node with the highest LLG value is shown in Fig. 1(b) with the

correct Si sites indicated by crosses. The Si-atom framework is

clearly identified and all atoms are close to maxima in the map.

3.2. ZSM-5

ZSM-5 (Kokotailo et al., 1978) crystallizes in space group

Pnma and the data comprise 50 h0l reflections with a

maximum resolution of ca 2 Å. The overall temperature factor

from normalization was imposed as 4.0 Å2 since Wilson’s

method gave a negative overall temperature factor. The origin

was defined via two reflections, 403 with jUhj
obs = 0.19, ’ = �,

and 503 with jUhj
obs = 0.16, ’ = 0. The resulting maximum-

entropy map is shown in Fig. 2(a). It can be seen that much of

the density approximately defines a low-resolution structure

but with some spurious peaks. There is sufficient dynamic

range in the map for the P(�q) formalism to work.

Eight reflections were given permuted phases in a full

factorial design. The P(�q) function was calculated for each of

the 256 phase combinations. The 64 phase sets with the

minimum associated values of P(�q) were retained and

subjected to entropy maximization. The resulting likelihood

estimates were calculated and analysed. The top-ranked map

via LLG estimation is shown in Fig. 2(b) with the correct Si

sites indicated by crosses. There is one spurious peak at ca

(0.09,0.78) and Si(2) is only weakly indicated but otherwise

the Si-atom framework is clearly identified and atoms are

within 0.6 Å of the maxima in the map.

3.3. MCM-68

MCM-68 (Dorset et al., 2006) crystallizes in space group

P42/mnm and these data comprise 42 hk0 reflections with a

maximum resolution of ca 1.8 Å. Fig. 3(a) shows the origin

centroid map based on one reflection, 520, with jUhj
obs = 0.19,

’ = 0. Fig. 3(b) shows the centroid map based on the origin-

defining reflections and eight reflections with permuted phases

filtered via the P(�q) function. This is the map with the highest

associated likelihood estimate. Two of the T-sites are not

clearly defined and the problem in which a single elongated

peak represents two Si atoms is evident here, and is a conse-

quence of data resolution and sparsity.

3.4. Basic copper chloride

Basic copper chloride, CuCl2 �3Cu(OH)2 (Voronova &

Vainshtein, 1958), crystallizes in space group P2/m and these

data comprise 120 reflections with a maximum resolution of ca
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Figure 5
Origin centroid map for MWW based on one reflection, 52�33, with jUhj

obs = 0.24, ’ = �. The Si sites are indicated by spheres. The yellow spheres are the
asymmetric unit and the blue ones the symmetry equivalents. (a) Looking down the c axis and (b) looking down the a axis. (c) Centroid map for node
ranked third by LLG analysis following the standard density-building procedure; the map is viewed down the c axis, and (d) viewed down the a axis.



0.7 Å. It is obviously not a zeolite but it is interesting to see if

the same principles can be used for inorganic structures. The

data set is three dimensional. Normalization included the

entire unit-cell contents. Fig. 4(a) shows the origin map based

on three reflections, 221, 321 and 111, with jUhj
obs = 0.51, 0.59

and 0.33, respectively, and with zero phase angles. Fig. 4(b) is

the centroid map from the third-ranked node from LLG

calculations following the use of the P(�q) function and

entropy maximization. The map is clear and all the atoms

except the Cl� ions are easily located including the O atoms.

3.5. MWW

MWW (Camblor et al., 1998) crystallizes in space group

P6/mmm; this data set comprises 155 reflections with a

maximum resolution of ca 1.3 Å. It is three-dimensional. Figs.

5(a) and 5(b) show two views of the origin centroid map based

on one reflection, 52�33, with jUhj
obs = 0.24, ’ = �. The Si sites

are indicated with spheres. The yellow spheres define the

asymmetric unit and the blue ones the symmetry equivalents.

The standard density-building procedure was applied. All the

top five maps ranked using LLGs were interpretable when

viewed down the c axis, but the third ranked was the clearest.

Figs. 5(c) and 5(d) show the centroid map for this node. In

projection down the c axis (Fig. 5c), the map is very clear.

However, the a projection (in Fig. 5d) is poor with no inter-

pretable peaks. No other node in the top five as assessed by

LLG value was interpretable either. As described in a

previous paper (Dorset et al., 2005), this is a consequence of

the missing cone of data arising from tilt sampling along c�,

and the structure is best solved in two stages: the two-

dimensional projection down c, followed by phase extension

into the third dimension, but this is beyond the scope of this

paper. We are also currently investigating methods of miti-

gating the missing cone problem using image processing

methods used in other fields; these include spectral analysis

and the singular-value-decomposition techniques (see, for

example, Hansen et al., 2006) and these will be described in a

later paper.

3.6. ITQ-29

Given the simplicity of the structure, with one T-site in the

asymmetric unit, it is surprisingly difficult to solve from this

data set. ITQ-29 (LTA) (Reed & Breck, 1956; Corma et al.,

2004) crystallizes in space group Pm�33m and these data

comprise 71 reflections with a maximum resolution of ca 1 Å.

Because the space group is cubic, the data are, in part, three-

dimensional although incomplete. An origin was defined using

the 111 reflection; the corresponding map is shown in Fig. 6(a).

The routine application of the density-building method

produced poor maps when ranked by LLG. However, it is

possible to employ potential-density histograms as figures of

merit, as described in detail in the previous paper. When this

was done, a node that was poorly ranked by LLG (27th) but

ranked second, third and second using the Pearson, Spearman

and mean-histogram correlation coefficients (Barr et al., 2004),

respectively, gave a map shown in Fig. 6(b). There is a spurious

peak but the framework is relatively clear.

3.7. ZSM-10

ZSM-10 (Foster et al., 2005; Dorset, 2006) crystallizes in

space group P6/mmm and this data set comprises 29 hk0

reflections with a maximum resolution of ca 2.7 Å. In this

space group with hk0 data only, there are no origin-defining

reflections, so it would appear that this method would not
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Figure 6
Origin centroid map for ITQ-29 in projection based on one reflection,
111, with jUhj

obs = 0.38, ’ = 0. (b) A projection for node 21. This is poorly
ranked using LLGs (27th) but it is ranked second, third and second using
the Pearson, Spearman and mean-histogram correlation coefficients,
respectively. The yellow sphere is the single T atom found within the
asymmetric unit and the blue spheres are symmetry equivalents.
(Sometimes the yellow sphere is obscured by the direction of view.)



work in these circumstances. However, there is an alternative

strategy. Two reflections were chosen using the same criteria as

used for origin definition, but they were given permuted

phases instead of fixing them, thus generating four nodes, each

of which were subject to entropy maximization. We now have

four possible ‘origin’ maps. The density-building method was

applied to each of these four nodes in turn, the results were

pooled into one set of 256 nodes (4 � 64) and analysed

together. The solution ranked second via LLG is shown in Fig.

7(a). The pore is well defined, but atom Si(5) is not visible on

the maps. As an experiment, this map was used as the source

of qME(x) for further density building in which eight more

reflections were given permuted phases, and used to compute

P(�q), with subsequent filtering and entropy maximization.

The map with the highest LLG value is shown in Fig. 7(b). The

position of atom Si(5) is now indicated. It was not possible to

continue this process because there were insufficient strong

reflections.

3.8. ITQ-7

There is a potential problem with this methodology that is

exemplified by this data set. ITQ-7 (Villaescusa et al., 1999)

crystallizes in space group P42/mmc and these data comprise

32 hk0 reflections with a maximum resolution of ca 1.6 Å. The

origin map generated from one reflection 030 with jUhj
obs =

0.19, ’= 0, is shown in Fig. 8(a). Two equal areas of density can

be seen: one where atom sites are present and one where the

converse is true. This latter area runs round the perimeter of

the unit cell. In applying the density-building function to this

situation, density is built in the wrong place. Fig. 8(b) shows a

typical example: only the coordinates of Si(1) are correctly

indicated but the map is wrong and uninterpretable. A

possible way to alleviate this problem is to incorporate prior
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Figure 7
The second-ranked map using LLG estimates for ZSM-10. (No origin
map is possible with these data and space group.) All the other top five
nodes showed only one large peak at the unit-cell origin. (b) The result of
further density building on this node. Eight more weak reflections have
been included in the basis set.

Figure 8
Origin centroid map for ITQ-7 based on one reflection, 030, with jUhj

obs =
0.19, ’ = 0. The Si sites are indicated with crosses. High density is red, low
density is green. (b) Typical centroid map based on the origin-defining
reflections plus eight reflections with permuted phases filtered via the
P(�q) function. The density has been built in the wrong region and the
structure is not solved.



knowledge of the pore size into the methodology and we are

currently investigating this possibility. The ME method allows

the incorporation of such data in an easy and natural manner

but it lies beyond the scope of this paper.

4. Conclusions and further developments

We have presented a method of solving zeolite structures from

electron diffraction data using maximum-entropy and like-

lihood methods supplemented with a density-building func-

tion that enhances the sampling of phase space when

compared to the use of likelihood alone. Since the method

needs Fourier maps in which the use of origin reflections only

can generate useful information, the method is well suited to

these structures as the unit-cell contents are relatively small

and the U magnitudes large. The method is very fast: the

computer time needed on a modest PC running at 2.8 GHz

with 1 Gbyte of RAM and running Windows XP was never

more than 2 min. The only caveat is the problem that arose

with ITQ-7 in which density, given the choice of two areas in

which to build, preferentially builds in the wrong zone, but this

happened only once in eight trials. It has also been successful

in the solution of an inorganic copper salt. The method is also

capable of being combined in an automatic way with histo-

gram matching, and we are working towards this goal in the

MICE program.

There are some exciting possibilities for extending this

work.

1. The use of prior information of pore size and position:

this can come from electron microscopy, simulation studies or

comparison with known frameworks. The pore then becomes a

prior m(x) and this is used throughout the calculation as a

modifier to qMEðxÞ (Bricogne, 1984). For example, the density-

building function now takes the form

Pð�qÞ ¼

Z
V

�qðxÞ2

mðxÞqMEðxÞ
dx: ð3Þ

2. The use of fragments: given a series of possible maps, it is

useful to choose potential atomic peaks on the basis of not

only geometry but also using entropy and likelihood consid-

erations with their generally robust behaviour with respect to

data errors. In this case, we can use not only jUhj
obs, jUhj

ME and

their associated phase angles, but also jUhj
frag calculated from

the proposed fragment and its phase angle. These three U

magnitudes are suitably scaled. We are currently testing this

methodology to both validate and complete zeolite structures.

3. Equation (2) is not the only available density-building

function. For example, we can use

Pð�q2Þ ¼ �

Z
V

½�qðxÞ�3

½qMEðxÞ�2
d3x: ð4Þ

4. This function has only been examined in relation to

protein structure solution (Tate, 2003), where it showed some

promise. It may prove to be a useful auxiliary function used

with or without pore information. It can be calculated at the

same time as P(�q2) without any significant extra computation

time required.

Methods 1–3 are not mutually exclusive but can be used in

combination with every prospect of improving our capabilities

in electron crystallography.

CJG acknowledges support from ExxonMobil Research

and Engineering Co. and the University of Glasgow.
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